Atari 2600:
Stella Console Hardware &
Combat Sample Game Software

Joe Decuir
jdecuir@nwlink.com
alumnus of Atari & Amiga

Agenda

Requirements for the 2600
Console architecture

TIA chip architecture

System programming model
Combat cartridge architecture
Display kernel detail

Vertical blank game play

Atari before Stella, 1975

» Founded in 1972, on coin-op Pong

» Developed more complex coin-op games

 Coin-op games migrated from random logic
to microprocessor based design

o Atari’ sfirst successful home game was
Pong, implemented in arandom logic chip

* Atari recognized the challenge of bringing
more complex games homes

Requirements for Stella

Atari management had aclear vision for the
product: provide a meansto bring

successful Arcade games home.

We had to hit a$200 max retail price for the
console, for Christmas of 1977.

Expected product life: 3 years (e.g. to 1979)

Non-goals: be an expandabl e personal
computer.

Implementation Choices

» From coin-op games, there were two
obvious ways to architect the system:
— non-programmable random logic
— programmable (uP) with screen bit-map
* Fatal flawsin both:

— random logic would be slow devel opment, and
not re-usable

— bit maps were expensive

Design choice:
split objects and playfield
The targeted games had distinct images:
— large static images (playfield)
— small moving images.
Adequate playfield could be done with low
resolution: 40x24 = 120 bytes, 960 bits

Adequate moving objects could be done
with apair of 8 byte squares and some
additional bits (e.g. 2 “missiles’ & a“ball”)

Design choice: soft vertical

960 + 64 + 64 was still alot of static RAM
cellsin 1976 technology.

* ROM isthe cheapest form of memory

* A preferred implementation would compute
pointersinto ROM.

* A fast enough microprocessor could do it.
The MOS Technology 6502 could do the job

Why was the 6502 so good?

* Process speed: depletion load pullup
transistors were much faster and smaller
than enhancement pullups (e.g. 6800).

* Architecture speed:

— little-endian addresses pipelined instructions

— indexed-indirect and indirect-indexed
instructions allowed use of zero page as an
array of fast memory pointers.

Design decisions

 Our target coin op games were two player
action (Tank - Combat), sports (Basketball)
and paddle (Pong -Video Olympics) .

We decided that we needed:

— 2 8-bit motion objects (PO, P1)

— 3 1-bit motion objects (M0, M1, Ball)

— 20 or 40 bits of low resolution playfield

Hardware Software tradeoffs:
Motion control

» The easy way to make these motion objects
would require abinary horizontal counter,
and 5 8-hit position registers and
comparators. We thought this would be
huge.

» The cheap way was to use dynamic
polynomial counters, running in paralel.

Motion in implemented with resets and
motion vectors.

Motion control, continued

» To appease the programmers, | generated a
‘Compute Horizontal Reset’ CHRST utility.

 Called with object index in X, positionin A:
— computes aloop count (15 clocks)
— computes aresidual motion vector (+/-7)
—waitsfor sync, loops, resets and writes motion

* For the programmers, this was good enough

Motion control, epilog

An alternative that we considered too late:

* keep the polynomial horizontal counter

* replace the separate object counters and
motion registers with simple position latches
and comparators

* use a160-byte look up tablein cartridge

ROM to map binary horizontal positionsto
polynomial counter values.

Other TIA chip features

» 4 7-bit palette registers
15 collision detection latches
* 2 channel sound system

— variable prescaler

— 4+5 bit polynomial counters

— volume registers

* trigger and potentiometer input ports

« trigger input could be used for light pens or
light guns.

Stella Graphics

Fundamental pixel resolutionis 1 color burst
clock (280nsec, 160/line) by 1 line.

Motion objectsare 1, 2, 4 or 8 clocks/hit.

Motion objects may be replicated in
hardware.

Playfield is 4 clocks per bit.

Playfield bits are either repeated or reflected
in hardware.

Human Input Requirements

» We needed console controls:
— Game select, and start switches
— Options: handicaps, color/monochrome

» We needed various types of game controls:
— For TANK, etc: ajoystick with a“fire” button
— For PONG: adual analog potentiometer
— For Driving: arotary control
— For head games: akeyboard

HID implementation

One power switch

5 bits of console parallel 1/0, not scanned
5 + 5 bits of game control 1/0, not scanned
—2bitsin TIA, 8 bitsin parallel ports

4 bits of potentiometer input, in TIA

Memory

Three choices:

— Dynamic RAM (multiple supplies, refresh logic)
— Static RAM (simple to use, expensive)

— Static RAM built into a combo chip

Decision:

— take the off-the-shelf 6530 combo chip

— delete the 1K byte ROM

— double the RAM to 128 bytes

Stella System

TIA video chip (see below)

6502-based processor, “6507":

— 13 bit address, no interrupts, RDY line
-1.2MHz

6532 combo

— 128 bytes of RAM (al mapped into zero page)
— 16 bits of parallel 1/O (joysticks and panel)

— timer (interrupt not used)

cartridge dlot for 2K or 4K ROMSs (24 pins)
2 game control ports

Stella Svstem Block Diagram

NART micRoprocEs:
GAME SYSTEM

TIA Register Map: 00-0A

00:0 Vertical Sync
00:1 Vertical Blank
02 Wait for Horizontal Sync — v S
03 Reset Horizontal sync (testing) o

04-05 Number and size of PO/MO, PL/M1
06-09 Color/lum registers
OA Playfield controls

RAM /10| Timen_
o P
Porr & Poara

‘}(GAME CONTROUE
q
| D puven 1

@JPMTUK z

I
] -

TIA Register Map: 0B-1F
0B-0C:3 Player reflect bits
0D-OF Playfield graphics (7-4; 7-0; 7-0)
10-14 Horizonta reset, all 5 objects
15-16 Audio control
17-18 Audio frequency
19-1A Audio volume
1B-1C Player graphics (8 bits)
1D-1F Missile/ball enable (1 bit each)

TIA Register Map: 20-3F

20-24 Horizontal motion registers (7-4)
25-27 Vertica delay: PO, P1, Ball
28-29 Reset Missilesto Players

e 2A Horizontal Motion strobe
« 2B Horizontal motion clear
« 2C Clear collision latches

30-37 Collision detect latches
38-3D 4 pot inputs, 2 trigger inputs

Combat Game Design

General architecture
Display generation
Game play

Sounds

Combat Game Architecture

 The code has three components:
— Game play code
— Graphics display code
— Graphics tables
* Therest of the system has:
— 128 bytes of RAM: variables and stack
— TIA: graphics, sound, inputs
— 6532 paralel 1/0 and timer

T vesca

Genera StellaGametiming

In Vertical Blank:

— detect collisions and control inputs

— decide new game conditions

— computer new game graphics pointers

In Display, for each line or two:

— step graphics pointers

— fetch graphics

—wait for horizontal blank, and write graphics

Combat Main loop

VCNTRL: generate vertical sync
GSGRCK: game select and reset

LDSTEL: load Stella (TIA) registers
CHKSW: read the joystick switches
COLIS: Detect and process object collisions
STPMPL: Move players and other objects
ROT: generate & rotate object graphics
SCROT: generate score graphics

VOUT: display the game

VCNTRL (F032-F053)

Count the frame

Clear motion registers

Three blank lines

Three lines of vertical sync

Set timer for rest of vertical blank

GSGRCK (F157-F1F1)

Check game control switches
If game done and timeout, do attract mode
If game reset, clear and reset game

If game select:
— step game number
— configure options

LDSTEL (F572-F5BC)

Deriveindexes into ROM game tables from
game number

Copy datafrom ROM game tablesinto TIA
Write color registers, from game or from
attract mode

Implement invisibility if required by game
option

CHKSW (F2DA-F40F)

Lock out controls for spin mode
Check difficulty switches (handicaps)
If rotation, update rotation index

If enabled, controls steer missiles, too
If fire buttons, initiate missile flight
Determine motor sounds

— MOTORS (F410-F443)

COLIS (F444-F524.)

* Scan selected hardware collision detect bits
* If amissile hits opponent player:

— Scoring

— Changesin mation: spin, RECOIL
* If aplayer or missile hits playfield

— Bounce/change direction

— Implement RECOIL if atank isin awall

STPMPL (F214-F2A8)

» Determine which objects need to move
* Inputs: 4+4 bit motion vectors

» Apply motion vectors to horizontal and
vertical addresses
— Fastest objects step every frame, slower don’t

— Jet/biplane games wrap around vertical and
horizontal

ROT (F2A9-F2D9)

Input: 4 bit rotation index: 22.5 degree steps
Conditionally enable graphics reflection
Compute the ROM graphics table address
Fill the output tablein RAM (OTTBL)

SCROT (F1F2-F253)

* Inputs: 4 BCD score digits

» Compute pointers to ROM table addresses
for each digit

» ROM tables are 3x5 bit images for simple
images of digits 0-9 plus blank

VOUT (F054-F156)

» Main components:

—Wait on the 6532 timer until the end of
vertical blank

—Implement horizontal motion for all 5
objects

—Display score digits
—Display playfield and objects

Horizontal motion

« For each moving object:
— Given the horizontal position (0-159)
— Compute aloop count for await loop, mod 15
— Compute the horizontal motion step, -7 to +7
— Wait for horizontal sync
— Run the wait loop
— Reset the object motion counter
— Write the horizontal motion register
* Write HMOVE after all registers set up

Display the Score digits

 For 6 horizontal line pairs, run adisplay kernel:
« Step the score digit indexes on alternate lines
¢ For eachline:
— Use score digit index values to compile two bytes of
score graphics
— Write thefirst score to PF1
— Wait to mid-screen
— Write the second score to PF1
« Exit to display the game

Display the Game

For pairs of horizontal lines:

Compute indexes to playfield:

— move 2.5 bytes from ROM tables

— playfields are vertically reflected in software
For each object that is on, copy graphics
— For 8 bit objects, copy graphics from RAM
— For 1 bit objects, enable/disable

Use Wait-for-sync, and write graphicsin
horizontal blank

Sound Control Registers

» Hardware generates sounds
» Two channels:
— Audio control: 4 bits (next slide)
— Audio frequency: 5 bits (divide by 1- 32)
— Audio volume: 4 bits (0-15)
» The base frequency = 30kHz (2 x hsync)

Audio Control Registers

0, B: set to 1, modulate with volume
1: 4 bit polynomial counter

2: div by 15 -> 4 bit poly counter

3: 5 hit poly counter clocks 4 bit poly counter
4,5: divideby 2

6, A: divide by 31

7: 5 bit poly counter, divide by 2

8: 9 hit poly counter (white noise)

9: 5 bit poly counter

C, D: divideby 6

E: divide by 93

5 bit poly counter divided by 6

