
1

Atari 2600:
Stella Console Hardware &

Combat Sample Game Software

Joe Decuir

jdecuir@nwlink.com

alumnus of Atari & Amiga

Agenda

• Requirements for the 2600

• Console architecture

• TIA chip architecture

• System programming model

• Combat cartridge architecture

• Display kernel detail

• Vertical blank game play

Atari before Stella, 1975

• Founded in 1972, on coin-op Pong
• Developed more complex coin-op games
• Coin-op games migrated from random logic

to microprocessor based design
• Atari’s first successful home game was

Pong, implemented in a random logic chip
• Atari recognized the challenge of bringing

more complex games homes

Requirements for Stella

• Atari management had a clear vision for the
product: provide a means to bring
successful Arcade games home.

• We had to hit a $200 max retail price for the
console, for Christmas of 1977.

• Expected product life: 3 years (e.g. to 1979)

• Non-goals: be an expandable personal
computer.

Implementation Choices

• From coin-op games, there were two
obvious ways to architect the system:
– non-programmable random logic
– programmable (uP) with screen bit-map

• Fatal flaws in both:
– random logic would be slow development, and

not re-usable
– bit maps were expensive

Design choice:
split objects and playfield

• The targeted games had distinct images:
– large static images (playfield)
– small moving images.

• Adequate playfield could be done with low
resolution: 40x24 = 120 bytes, 960 bits

• Adequate moving objects could be done
with a pair of 8 byte squares and some
additional bits (e.g. 2 “missiles” & a “ball”)

2

Design choice: soft vertical

• 960 + 64 + 64 was still a lot of static RAM
cells in 1976 technology.

• ROM is the cheapest form of memory

• A preferred implementation would compute
pointers into ROM.

• A fast enough microprocessor could do it.

• The MOS Technology 6502 could do the job

Why was the 6502 so good?

• Process speed: depletion load pullup
transistors were much faster and smaller
than enhancement pullups (e.g. 6800).

• Architecture speed:
– little-endian addresses pipelined instructions

– indexed-indirect and indirect-indexed
instructions allowed use of zero page as an
array of fast memory pointers.

Design decisions

• Our target coin op games were two player
action (Tank - Combat), sports (Basketball)
and paddle (Pong -Video Olympics) .

• We decided that we needed:
– 2 8-bit motion objects (P0, P1)

– 3 1-bit motion objects (M0, M1, Ball)

– 20 or 40 bits of low resolution playfield

Hardware Software tradeoffs:
Motion control

• The easy way to make these motion objects
would require a binary horizontal counter,
and 5 8-bit position registers and
comparators. We thought this would be
huge.

• The cheap way was to use dynamic
polynomial counters, running in parallel.
Motion in implemented with resets and
motion vectors.

Motion control, continued

• To appease the programmers, I generated a
‘Compute Horizontal Reset’ CHRST utility.

• Called with object index in X, position in A:
– computes a loop count (15 clocks)

– computes a residual motion vector (+/-7)

– waits for sync, loops, resets and writes motion

• For the programmers, this was good enough

Motion control, epilog

An alternative that we considered too late:

• keep the polynomial horizontal counter

• replace the separate object counters and
motion registers with simple position latches
and comparators

• use a 160-byte look up table in cartridge
ROM to map binary horizontal positions to
polynomial counter values.

3

Other TIA chip features
• 4 7-bit palette registers
• 15 collision detection latches
• 2 channel sound system

– variable prescaler
– 4+5 bit polynomial counters
– volume registers

• trigger and potentiometer input ports
• trigger input could be used for light pens or

light guns.

Stella Graphics

• Fundamental pixel resolution is 1 color burst
clock (280nsec, 160/line) by 1 line.

• Motion objects are 1, 2, 4 or 8 clocks/bit.

• Motion objects may be replicated in
hardware.

• Playfield is 4 clocks per bit.

• Playfield bits are either repeated or reflected
in hardware.

Human Input Requirements

• We needed console controls:
– Game select, and start switches

– Options: handicaps, color/monochrome

• We needed various types of game controls:
– For TANK, etc: a joystick with a “fire” button

– For PONG: a dual analog potentiometer

– For Driving: a rotary control

– For head games: a keyboard

HID implementation

• One power switch

• 5 bits of console parallel I/O, not scanned

• 5 + 5 bits of game control I/O, not scanned
– 2 bits in TIA, 8 bits in parallel ports

• 4 bits of potentiometer input, in TIA

Memory

• Three choices:
– Dynamic RAM (multiple supplies, refresh logic)
– Static RAM (simple to use, expensive)
– Static RAM built into a combo chip

• Decision:
– take the off-the-shelf 6530 combo chip
– delete the 1K byte ROM
– double the RAM to 128 bytes

Stella System
• TIA video chip (see below)
• 6502-based processor, “6507”:

– 13 bit address, no interrupts, RDY line
– 1.2 MHz

• 6532 combo
– 128 bytes of RAM (all mapped into zero page)
– 16 bits of parallel I/O (joysticks and panel)
– timer (interrupt not used)

• cartridge slot for 2K or 4K ROMs (24 pins)
• 2 game control ports

4

TIA Register Map: 00-0A

• 00:0 Vertical Sync

• 00:1 Vertical Blank

• 02 Wait for Horizontal Sync

• 03 Reset Horizontal sync (testing)

• 04-05 Number and size of P0/M0, P1/M1

• 06-09 Color/lum registers

• 0A Playfield controls

Stella System Block Diagram

TIA Register Map: 0B-1F
• 0B-0C:3 Player reflect bits
• 0D-0F Playfield graphics (7-4; 7-0; 7-0)
• 10-14 Horizontal reset, all 5 objects
• 15-16 Audio control
• 17-18 Audio frequency
• 19-1A Audio volume
• 1B-1C Player graphics (8 bits)
• 1D-1F Missile/ball enable (1 bit each)

TIA Register Map: 20-3F
• 20-24 Horizontal motion registers (7-4)
• 25-27 Vertical delay: P0, P1, Ball
• 28-29 Reset Missiles to Players
• 2A Horizontal Motion strobe
• 2B Horizontal motion clear
• 2C Clear collision latches
• 30-37 Collision detect latches
• 38-3D 4 pot inputs, 2 trigger inputs

Combat Game Design

• General architecture

• Display generation

• Game play

• Sounds

Combat Game Architecture

• The code has three components:
– Game play code
– Graphics display code
– Graphics tables

• The rest of the system has:
– 128 bytes of RAM: variables and stack
– TIA: graphics, sound, inputs
– 6532 parallel I/O and timer

5

General Stella Game timing

• In Vertical Blank:
– detect collisions and control inputs
– decide new game conditions
– computer new game graphics pointers

• In Display, for each line or two:
– step graphics pointers
– fetch graphics
– wait for horizontal blank, and write graphics

Combat Main loop
• VCNTRL: generate vertical sync

• GSGRCK: game select and reset

• LDSTEL: load Stella (TIA) registers

• CHKSW: read the joystick switches

• COLIS: Detect and process object collisions

• STPMPL: Move players and other objects

• ROT: generate & rotate object graphics

• SCROT: generate score graphics

• VOUT: display the game

VCNTRL (F032-F053)

• Count the frame

• Clear motion registers

• Three blank lines

• Three lines of vertical sync

• Set timer for rest of vertical blank

GSGRCK (F157-F1F1)

• Check game control switches

• If game done and timeout, do attract mode

• If game reset, clear and reset game

• If game select:
– step game number

– configure options

LDSTEL (F572-F5BC)

• Derive indexes into ROM game tables from
game number

• Copy data from ROM game tables into TIA

• Write color registers, from game or from
attract mode

• Implement invisibility if required by game
option

CHKSW (F2DA-F40F)

• Lock out controls for spin mode

• Check difficulty switches (handicaps)

• If rotation, update rotation index

• If enabled, controls steer missiles, too

• If fire buttons, initiate missile flight

• Determine motor sounds
– MOTORS (F410-F443)

6

COLIS (F444-F524)

• Scan selected hardware collision detect bits

• If a missile hits opponent player:
– Scoring

– Changes in motion: spin, RECOIL

• If a player or missile hits playfield
– Bounce/change direction

– Implement RECOIL if a tank is in a wall

STPMPL (F214-F2A8)

• Determine which objects need to move

• Inputs: 4+4 bit motion vectors

• Apply motion vectors to horizontal and
vertical addresses
– Fastest objects step every frame, slower don’t

– Jet/biplane games wrap around vertical and
horizontal

ROT (F2A9-F2D9)

• Input: 4 bit rotation index: 22.5 degree steps

• Conditionally enable graphics reflection

• Compute the ROM graphics table address

• Fill the output table in RAM (OTTBL)

SCROT (F1F2-F253)

• Inputs: 4 BCD score digits

• Compute pointers to ROM table addresses
for each digit

• ROM tables are 3x5 bit images for simple
images of digits 0-9 plus blank

VOUT (F054-F156)

• Main components:

– Wait on the 6532 timer until the end of
vertical blank

– Implement horizontal motion for all 5
objects

– Display score digits

– Display playfield and objects

Horizontal motion

• For each moving object:
– Given the horizontal position (0-159)

– Compute a loop count for a wait loop, mod 15

– Compute the horizontal motion step, -7 to +7

– Wait for horizontal sync

– Run the wait loop

– Reset the object motion counter

– Write the horizontal motion register

• Write HMOVE after all registers set up

7

Display the Score digits

• For 6 horizontal line pairs, run a display kernel:
• Step the score digit indexes on alternate lines
• For each line:

– Use score digit index values to compile two bytes of
score graphics

– Write the first score to PF1
– Wait to mid-screen
– Write the second score to PF1

• Exit to display the game

Display the Game

• For pairs of horizontal lines:
• Compute indexes to playfield:

– move 2.5 bytes from ROM tables
– playfields are vertically reflected in software

• For each object that is on, copy graphics
– For 8 bit objects, copy graphics from RAM
– For 1 bit objects, enable/disable

• Use Wait-for-sync, and write graphics in
horizontal blank

Sound Control Registers

• Hardware generates sounds

• Two channels:
– Audio control: 4 bits (next slide)

– Audio frequency: 5 bits (divide by 1- 32)

– Audio volume: 4 bits (0-15)

• The base frequency = 30kHz (2 x hsync)

Audio Control Registers
• 0, B: set to 1, modulate with volume
• 1: 4 bit polynomial counter
• 2: div by 15 -> 4 bit poly counter
• 3: 5 bit poly counter clocks 4 bit poly counter
• 4, 5: divide by 2
• 6, A: divide by 31
• 7: 5 bit poly counter, divide by 2
• 8: 9 bit poly counter (white noise)
• 9: 5 bit poly counter
• C, D: divide by 6
• E: divide by 93
• 5 bit poly counter divided by 6

